А.М. Шилов, д.м.н., профессор, А.Ш. Авшалумов, В.Б. Марковский, Е.Н. Синицина, Д.А. Грязнов, А.О. Осия, Московская медицинская академия им. И.М. Сеченова. Клиника кибернетической медицины, г. Москва. Россия

Взаимосвязь дефицита магния и метаболического синдрома

Последние годы характеризуются пристальным вниманием со стороны исследователей в различных областях теоретической и практической медицины к проблеме дефицита магния и его роли при формировании различных патологических состояний органов и систем человеческого организма. Дефицит магния – это снижение концентрации магния внутри клетки.

В настоящее время установлено наличие не менее 290 генов и белковых соединений в последовательности генома человека, которые способны связывать Mg²⁺ как кофактор множества ферментов, участвующих более чем в 300 внутриклеточных биохимических реакциях. Mg^{2+} — естественный физиологический антагонист Ca²⁺, универсальный регулятор биохимических и физиологических процессов в организме, обеспечивает гидролиз АТФ, уменьшая разобщение окисления и фосфорилирование, регулирует гликолиз, уменьшает накопление лактата, способствует фиксации К в клетках, обеспечивая поляризацию клеточных мембран, и контролирует спонтанную электрическую активность нервной ткани и проводящей системы сердца, контролирует нормальное функционирование кардиомиоцита на всех уровнях субклеточных структур – универсальный кардиопротектор (рис. 1).

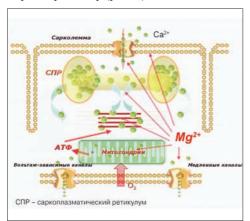


Рис. 1. Схема строения кардиомиоцита и кардиопротективного действия ${
m Mg}^{2^+}$

Существуют два нарушения, которые наблюдаются при всех состояниях, связанных с дефицитом магния и метаболическим синдромом (МС), взаимно влияющие друг на друга. Недостаток магния способствует снижению чувствительности рецепторов к инсулину, а неполноценный ответ на инсулин влияет как на захват клетками глюкозы, так и на транспортировку магния в клетки. Кроме того, дефицит магния оказывает негативное влияние на секрецию и активность инсулина, что способствует формированию и прогрессированию инсулинорезистентности (ИР) — основному этиологическому фактору МС.

При МС регистрируются нарушения реологических параметров крови: повышение агрегационной активности тромбоцитов, снижение эластичности и подвижности эритроцитов, что способствует увеличению общего сосудистого сопротивления с повышением артериального давления. Увеличение внутриклеточного Ca²⁺ в тромбоците на фоне дефицита магния активирует фосфолипазу А2, которая в свою очередь стимулирует высвобождение арахидоновой кислоты. Арахидоновая кислота под действием циклооксигеназы-1 и 12-липооксигеназы конвертируется в тромбоксан А₂ и лейкотриен-6. Тромбоксан А₂ совместно с аденозиндифосфатом инициируют вазоспазм и процессы агрегации тромбоцитов, лежащие в основе образования атерогенных бляшек.

В экспериментах на животных было изучено влияние различных препаратов магния на индексы склеротических изменений сосудов. Под воздействием экспериментального «холестеринового стресса» у животных без лечения такие изменения быстро прогрессировали, и их нельзя было

предотвратить. При назначении хлорида магния ($MgCI_2$) было отмечено практически двукратное уменьшение индекса объема холестериновых бляшек. Оротовая кислота в аналогичных ситуациях оказывала более выраженный антисклеротический эффект по сравнению с $MgCI_2$. Однако в качестве оптимальной защиты наиболее хорошо зарекомендовал себя оротат магния ($Marhepot^{\$}$) (рис. 2).

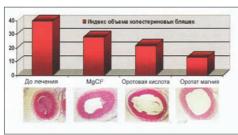


Рис. 2. Динамика индекса объема холестериновых бляшек у животных при воздействии различных препаратов магния

Таким образом, многочисленные экспериментальные исследования, клинические наблюдения конца XX — начала XXI века указывают на высокую частоту (до 70% и более) участия дефицита магния в патогенезе и прогрессировании сердечнососудистых заболеваний, что диктует необходимость включения препаратов магния в комплексное лечение различных заболеваний, сопряженных с метаболическими нарушениями углеводного и липидного обменов. Все вышеизложенное является предметом обсуждения в данной работе.

Под нашим наблюдением находилось 87 пациентов с МС (мужчины/женщины — 33/54) в возрасте старше 45 лет (средний возраст по группе составил 52,7 \pm 4,2 года), с индексом массы тела, превышающим 25 кг/м² (средняя величина в целом по группе составила 31,1 \pm 2,2 кг/м²). По данным исследования минерального состава волос у 42 пациентов (48,3%) с МС уровень магния был <15 мкг/кг и в среднем составил 11,4 \pm 2,1 мкг/кг, у 45 пациентов (51,7%) с МС уровень магния был >17 мкг/кг и в среднем составил 18,9 \pm 0,8 мкг/кг.

Тридцати пяти больным МС, включенным в программу исследования, с целью выявления частоты дефицита магния определяли концентрацию магния в эритроцитах (n=1,65-2,55 ммоль/л): в 16 случаях (45,7%) уровень магния в эритроцитах был <1,6 ммоль/л и в среднем составил 1,45+0,06 ммоль/л, в 19 наблюдениях (54,3%) уровень магния был >1,7 ммоль/л и в среднем по подгруппе составил 1,98±0,03 ммоль/л.

В зависимости от уровня магния в эритроцитах больные МС были распределены на две подгруппы: подгруппа А (19 пациентов) – без дефицита магния, подгруппа Б (16 больных) – с дефицитом магния. Исследуемые подгруппы не различались по исходным клиническим и демографическим параметрам. Результаты межгруппового сравнения уровней глюкозы натощак, гликозилированного гемоглобина, липидного спектра крови (ТГ, ОХС, ХС, ЛПВП, ИА), гликемического профиля, концентрации иммунореактивного инсулина (ИРИ) и С-пептида после перорального теста толерантности к глюкозе (ПТТГ) до и после лечения представлены в таблице. Все пашиенты получали станлартное лечение. У 16 больных МС в сочетании с дефицитом магния (Mg $-1,45\pm0,06$ ммоль/л - эритроцит) к стандартной программе лечения были добавлены препараты магния. Стартовое

лечение препаратами магния начинали с внутривенной инфузии сульфата магния со скоростью 0,5-0,6 г/ч из расчета 10-12 г в сутки (в течение 2-3 дней) с последующим переходом на пероральный прием Магнерота 3 г в сутки (6 таблеток).

Как видно из таблицы, средние уровни ИМТ, глюкозы натощак и показателей липидного спектра крови у всех пациентов по подгруппам соответствовали критериям МС.

В подгруппе Б концентрация Мд²⁺ в эритропитах была статистически лостоверно ниже нормативных уровней и на 26,8% (p<0,01) ниже по сравнению с аналогичным показателем подгруппы А. Исходные суммарные показатели гликемического, липидного профилей и ПТТГ по подгруппам (А и Б) практически (статистически недостоверно) не отличались друг от друга. В подгруппе Б (МС с дефицитом магния) имеют место статистически достоверные (p<0,001) исходные повышения концентрации ИРИ и С-пептида по сравнению с аналогичными показателями подгруппы А – соответственно пятикратное (на 422%) и двукратное (на 150%), что косвенно свидетельствует о более выраженной ИР и компенсаторной гиперфункции поджелудочной железы у пациентов с дефицитом магния.

После проведенного лечения (в конце исследования, через 8 недель) в подгруппе Б на фоне роста концентрации магния в эритроцитах на 35,9% (от $1,45\pm0,06$ ммоль/л до $1,97\pm0,04$ ммоль/л) отмечено значительное снижение ИР, что документируется практически двукратным уменьшением площади под кривой ИРИ (на 55%, p<0,001) при проведении ПТТГ по сравнению с подгруппой A, в которой аналогичный параметр уменьшился на 32% (p<0,01).

На фоне снижения ИР при приеме препаратов магния (сульфат магния, Магнерот®) у больных МС, сочетающимся с дефицитом магния, также отмечены положительные сдвиги в углеводном обмене, что документируется снижением уровня HbA_{1c} в подгруппе E на 6.9% (от 7.42 ± 0.3 до

 $6,91\pm0,2\%$, p<0,05), в то время как в подгруппе А аналогичный показатель статистически недостоверно уменьшился только на 2,3% (от $6,87\pm0,3$ до $6,71\pm0,21\%$, p>0,05).

В наших исследованиях при лечении больных МС, сочетающимся с атерогенной дислипидемией, в подгруппе Б после стартового лечения внутривенной инфузией сульфата магния в дозе 12 г/сут в течение 2 дней с последующим пероральным приемом Магнерота (3 г/сут) в течение 8 недель отмечены статистически достоверные снижения ОХС на 19,7%, ТГ на 24,8%, с повышением ХС ЛПВП на 21%, что суммарно привело к снижению ИА на 39,5%. В подгруппе А на фоне снижения ИР также имела место нормализация липидного спектра крови в сторону антиатерогенности, документируемая снижением ИА на 15,5% (от 3,7±0,2 до $3,2\pm0,3, p<0,05$).

При изучении реологических свойств крови у больных МС отмечено увеличение агрегационной активности тромбоцитов (ААТр) и снижение электрофоретической подвижности эритроцитов (ЭФПЭ). К концу контрольного срока лечения ААТр снизилась, а ЭФПЭ увеличилась в целом по группе больных МС (соответственно -23,4% и +13,5%). В подгруппе А скорость ЭФПЭ увеличилась на 12,1%, ААТр снизилась на -22,1%; в подгруппе Б скорость ЭФПЭ возросла на +15,2%, ААТр уменьшилась на 24,9% (межтрупповая разница статистически достоверна – p<0,05).

Магнерот® в суточной дозе 3 г эффективен и хорошо переносится при коррекции нарушений ритма сердечной деятельности у пациентов с клиническими проявлениями недифференцированной дисплазии соединительной ткани.

Таким образом, данные литературы и наши наблюдения указывают на высокую частоту (от 40 до 50%) сочетания МС с дефицитом магния. Включение препаратов магния (Магнерот® 3 г/сут) в комплексную терапию МС оказывает антиаритмогенный эффект, способствует более эффективному снижению ИР, лежащей в основе метаболических нарушений, нормализации гликемического, липидного профилей и реологических свойств крови, что суммарно ведет к снижению артериального давления, профилактике атеросклероза и сердечнососудистых осложнений.

Статья напечатана в сокращении. «Русский медицинский журнал», т. 17, № 8, 2009 г.

Таблица. Динамика показателей углеводного и липидного спектров крови, ИР в зависимости от программы лечения Подгруппа А. Без дефицита магния (19 пациентов МС) (16 пациентов МС) До лечения После лечения До лечения После лечения

Показатели	магния (19 пациентов МС)		(16 пациентов МС)	
	До лечения	После лечения	До лечения	После лечения
Возраст, лет	52,4±3,8		53,1±4,2	
ИМТ, кг/м²	30,4±1,8	28,7±1,6	31,9±2,1	30,1±1,5
HbA _{1cr} %	6,87±0,3	6,71±0,21	7,42±0,3*	6,91±0,2*
ТГ, ммоль/л	1,95±0,3	1,65±0,2	2,1±0,25"	1,58±0,2*
ОХС, ммоль/л	5,9±0,3	5,4±0,3	6,1±0,35*	4,9±0,2*
ХС ЛПВП, ммоль/л	1,05±10,07	1,1±0,08	0,95±0,04.	1,15±0,05*
ИА	3,7±0,2*	3,2±0,3*	4,3±0,3**	2,6±0,15**
Глюкоза натощак, ммоль/л	5,85±10,3	5,4±0,2	6,1±0,2	5,3±0,5
Через 30 мин	8,6±0,25	8,1±0,3	10,9±0,3	8,6±0,4
Через 60 мин	9,75±0,3	7,5±0,25	11,4±0,35	7,6±0,3
Через 120 мин	8,9±0,2	5,5±0,2	10,3±0,3	5,4±0,2
ИРИ натощак, мкМЕ/мл	4,5±0,11**	4,1 ±0,2	23,5±1,7**	10,3±1,2
Через 30 мин	40,7x2,7**	35,2±3,1	93,7±9,1**	46,4±3,3
Через 60 мин	48,2+2,9**	34,2±2,1	105,3±11,2**	47,1±5,1
Через 120 мин	36,2±3,3**	32,1±2,9	134,7±12,4**	38,2±3,1
С-пептид натощак, нг/мл	2,1±0,4*	3,4±0,3	5,14±0,35*	5,3±0,3
Через 30 мин	9,57+1,1	8,1±0,9	10,4±1,2	7,8±0,8
Через 60 мин	8,62±0,6*	7,9±0,7	11,8±0,9*	7,9±0,6
Через 120 мин	10,65±0,9*	7,84±0,5	14,03±1,2*	8,3±0,7
Mg эритр., ммоль/л	1,98±0,03*	2,1±0,04	1,45±0,06*	1,97±0,04*
Mg волосы, мкг/кг	18,9±0,8	17,9±0,6	11,4±2,1	14,5±2,3

Примечания: ИМТ – индекс массы тела, ТГ – триглицериды, ОХС – общий холестерин, ХС ЛПВП – холестерин липопротеидов высокой плотности, ИА – индекс атерогенности. *p<0,01; **p<0,001.

Здоров'я України°