С.Г. Сова, к.м.н., Национальный медицинский университет им. А.А. Богомольца, г. Киев

Актуальность нейропротекции при артериальной гипертензии

Гипертоническая энцефалопатия (ГЭ) представляет собой медленно прогрессирующее диффузное и очаговое поражение вещества головного мозга, индуцируемое длительно существующей неконтролируемой АГ. Понятие «гипертоническая энцефалопатия» давно используется в литературе. Оно отражает особую форму нарушений мозгового кровообращения при гипертонической болезни.

Вопрос о причинах повреждения сосудов и ткани мозга при АГ дискутируется на протяжении многих лет. Обычно рассматривают две теории патогенеза этих изменений — концепцию спазма сосудов мозга и возникающей вследствие него первичной ишемии мозга и теорию срыва механизмов ауторегуляции мозгового кровотока у верхней границы с сопровождающим ее увеличением кровотока в мозге, развитием фильтрационного отека мозга и возможным вторичным уменьшением кровотока, т. е. также появлением ишемии мозга, но вторичной по своему генезу.

Принято выделять две формы ГЭ — острую (ОГЭ) и хроническую (ХГЭ). ОГЭ возникает при остром повышении артериального давления (АД), ХГЭ развивается при длительном течении гипертонической болезни.

ОГЭ характеризуется быстрым появлением симптоматики с преобладанием общемозговых расстройств над очаговыми вследствие срыва механизмов ауторегуляции мозгового кровотока во время гипертонического криза и развитием отека-набухания головного мозга. На высоте гипертонического криза больной жалуется на интенсивную головную боль, чаще распирающего характера, сопровождающуюся тошнотой и рвотой. Наблюдается оглушенность, возможны головокружение, шум и звон в ушах, нарушение зрения в виде преходящих фотопсий, судорожный синдром. Из неврологической симптоматики наиболее характерными являются расширение зрачков, слабость и болезненность глазодвигательных реакций, болезненность точек выхода тройничного нерва, светобоязнь, напряжение мыши затылка: возможны появление менингеального симптомокомплекса, анизорефлексии, патологических рефлексов, нистагма, нарушение статики и координации. При проведении нейровизуализирующих исследований регистрируются изменения, характерные для отека-набухания головного мозга. ОГЭ – ургентное состояние, требующее срочного терапевтического вмешательства и мониторирования основных показателей гомеостаза и витальных функций, поскольку в этот период существенно

возрастает риск развития острого нарушения мозгового кровообращения.

Для ХГЭ характерно прогредиентное течение с различными клиническими проявлениями, включая такое тяжелое осложнение, как деменция. Зачастую на начальных этапах развития патологического процесса к повышенному уровню АД присоединяется атеросклероз мозговых сосудов, усугубляющий ишемию головного мозга и усиливающий тяжесть течения ГЭ.

Многочисленными исследованиями показано, что относительный риск развития ГЭ коррелирует с повышением АД. При уровне АД >160/95 мм рт. ст. вероятность декомпенсации ГЭ увеличивается в 4 раза, а при показателях АД >200/115 мм рт. ст. — в 10 раз по сравнению с таковой при нормотензии.

Морфологическим субстратом ГЭ являются мелкоочаговые (лакуны) и лиффузные (лейкоареоз) изменения белого вещества головного мозга, обусловленные главным образом деструктивными повреждениями артерий в виде плазмо- и геморрагий, некрозов с истончением стенки сосудов, предопределяющих формирование микроаневризм, периваскулярного энцефалолизиса, прогрессирующей деструкции миелиновой оболочки нервных волокон и геморрагического пропитывания (рис.). Решающее значение в инициации процесса лейкоареоза отводится таким факторам, как возраст пациента (>60 лет), высокая вариабельность АД, гипертонические кризы, ночная гипертензия, эпизоды ортостатической гипотензии.

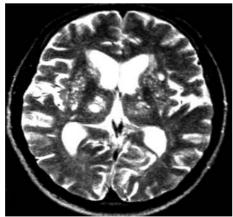


Рис. Множественные лакуны и лейкоареоз при ГЭ

Параллельно с вышеописанными изменениями происходит ремоделирование сосудистой стенки, характеризующееся утолщением интимы-медии, прогрессированием эндотелиальной дисфункции с последующим увеличением степени стеноза, что ведет к усугублению уже существующей гипоперфузии головного мозга, усилению ишемических процессов

и в конечном итоге к более быстрому развитию сосудистых катастроф. На этом этапе также отмечается ряд гемореологических нарушений в виде снижения деформационной способности эритроцитов, увеличения вязкости крови, повышения величины гематокрита, крайне негативно сказывающихся на микроциркуляции.

Гипоперфузия приводит к ишемии головного мозга и снижению активности окислительного фосфорилирования, активации анаэробного окисления, развитию лактатацидоза и гиперосмолярности, запуску глутаматного каскада эксайтотоксичности, приводящего к деполяризации клеточных мембран вследствие активирующего притока ионов кальция и натрия внутрь клетки, запуску перекисного окисления липидов, активации апоптоза и продукции микроглией нейротоксических факторов (протеаз, NO, активных форм кислорода, цитокинов воспаления - фактора некроза опухоли α, интерферона), что в совокупности приводит к ускоренной гибели

Помимо повышения риска развития цереброваскулярных катастроф, неконтролируемая АГ опасна еще и тем, что при ее длительном бессимптомном (либо малосимптомном) течении она неизбежно приводит к формированию микроангиопатий и расширению границ лейкоареоза. Более того, проведенный метаанализ серии исследований (12 091 пациент с АГ) позволил сформулировать интересный вывод: адекватный контроль АД обеспечивает эффективную защиту в отношении развития инсульта, но не способен предотвратить развитие микроангиопатий с последующим поражением белого вещества головного мозга и развитием когнитивных нарушений (O'Brien et al., 2004). Таким образом, одного лишь контроля АД недостаточно для предотвращения дементных ишемических расстройств при ГЭ.

Особенности клинической картины ХГЭ определяются стадией патологического процесса. І стадия характеризуется вариабельностью и непостоянством симптомов, II и III свойственны различной выраженности сформированные неврологические синдромокомплексы. На начальных этапах преобладают субъективные жалобы: снижение умственной работоспособности, памяти, внимания, рассеянность, головные боли, головокружение, шум в ушах, вегетативные нарушения, рассеянная неврологическая микросимптоматика; психометрические шкалы указывают на развитие синдрома легкого когнитивного снижения.

С.Г. Сова

При магнитно-резонансной томографии (MPT) чаще всего определяется расширение пространств Вирхова. Социальная адаптация практически не нарушается.

На II стадии рассеянная неврологическая симптоматика группируется в четко определенные синдромокомплексы. Происходит разбалансировка циркадианных ритмов, углубляются интеллектуально-мнестические расстройства до степени умеренного когнитивного расстройства, снижается критика. Часто обнаруживаются симптомы соматизированной дистимии и другие варианты тревожно-депрессивных нарушений. Из неврологических синдромов наиболее частыми являются вестибулярный или кохлеовестибулярный, мозжечковая дискоординация, пирамидная недостаточность, сосудистый паркинсонизм, псевдобульбарный и эпилептиформный синдромы. На МРТ появляются ишемические очаги (лакуны), часто в перивентрикулярной и субкортикальной зонах белого вещества головного мозга, и лейкоареоз. Нарушается социальная адаптация.

Для клинической картины III стадии ХГЭ характерно сочетание нескольких неврологических синдромов. Отмечаются выраженные когнитивные нарушения вплоть до тяжелой деменции. Утрата трудоспособности и грубое снижение социальной адаптации являются сильными психотравмирующими факторами, предопределяющими возникновение разнообразных аффективных нарушений депрессивного спектра. На МРТ регистрируются выраженные атрофические изменения и множественные лакуны (лакунарное состояние), возможно появления более крупных очагов вследствие перенесенных острых нарушений мозгового кровообращения.

Верификация диагноза ГЭ основывается на наличии связи АГ с клиническими проявлениями хронической ишемии головного мозга, подтвержденной инструментально и лабораторно. Для этого используют сосудистые методики изучения кровообращения головы и шеи (ультразвуковую допплерографию), методы нейровизуализации (КТ, МРТ, ОФЭКТ, ПЭТ) с сосудистыми программами, психодиагностические шкалы (ММЅЕ и др.), рутинные клинические исследования (анализ крови, мочи, ЭКГ и ЭхоКГ, рентгенографию органов грудной клетки, липидо- и коагулограмму и т. д.).

Продолжение на стр. 4.

С.Г. Сова, к.м.н., Национальный медицинский университет им. А.А. Богомольца, г. Киев

Актуальность нейропротекции при артериальной гипертензии

Продолжение. Начало на стр. 3.

Необходимо учитывать, что стрессовые ситуации, тревога, депрессия, травмы головного мозга, инфекции, интоксикации, профессиональные вредности способствуют прогрессированию $A\Gamma$ и Γ 9.

Предупреждение формирования и дальнейшего прогрессирования ГЭ предусматривает:

- лечение АГ путем систематической индивидуально подобранной антигипертензивной терапии с достижением целевых значений АЛ:
- воздействие на модифицируемые факторы риска сердечно-сосудистых заболеваний (дислипопротеинемию, гиперкоагуляцию, курение, чрезмерное употребление алкоголя, гиподинамию);
- лечение сопутствующих заболеваний и коррекцию метаболических нарушений (сахарного диабета, нарушений ритма сердца, сердечной недостаточности, васкулитов и т. д.);
- улучшение перфузии головного мозга и коррекцию метаболических нарушений в нервных клетках, функционируюших в условиях ишемии и гипоксии:
- коррекцию эмоциональных расстройств.

Наряду с этими задачами особое значение в комплексной терапии пациента с ГЭ уделяется выбору препарата с избирательным цереброваскулярным эффектом, антиоксидантной и гемореологической активностью, способным оказывать комбинированное сосудисто-метаболическое действие. Препарат не должен взаимодействовать с другими фармакологическими средствами, иначе говоря, препятствовать эффективной антигипертензивной терапии.

К сожалению, многие часто назначаемые практическим врачом лекарства не всегда в полной мере отвечают этим критериям.

Более 30 лет одним из самых эффективных и безопасных лекарственных средств для лечения ГЭ является оригинальный препарат Кавинтон (винпоцетин) производства компании «Гедеон Рихтер А.О.» (Венгрия).

Винпоцетин – естественный алкалоид барвинка малого, разносторонне воздействующий на патогенетические механизмы развития ГЭ. Установлено, что препарат позитивно влияет на метаболизм головного мозга, состояние его макро- и микроциркуляции [2-4]. Путем повышения внутриклеточного уровня циклического гуанозинмонофосфата в гладкой мускулатуре сосудистой стенки он подавляет гиперагрегацию тромбоцитов, улучшая реологические характеристики крови, восстанавливает деформируемость эритроцитов, что приводит к интенсификации тканевого транспорта кислорода [5]. Необходимо отметить, что вазотропный эффект Кавинтона, связанный с ингибированием захвата аденозина, выражается лишь в уменьшении периферического сопротивления мозговых сосудов и не затрагивает системную гемодинамику [6, 7]. Нейропротекторный эффект винпоцетина обусловлен его способностью повышать коэффициент утилизации глюкозы и кислорода мозговой тканью, что способствует увеличению ее резистентности к гипоксии, накоплению АТФ и активизации интрацеребрального метаболизма норалреналина и серотонина [8-10].

Существенную ценность в лечении ГЭ представляет ноотропный эффект

Кавинтона, реализуемый путем блокады кальциевых и натриевых каналов, усиления захвата глутамата, ингибирования NMDA-рецепторов и аденозинмонофосфата, препятствия деполяризации клеточных мембран, что клинически выражается в облегчении процесса обучения [11, 12]. Кроме того, накоплены данные, позволяющие утверждать, что на фоне перорального приема 40 мг Кавинтона достоверно улучшаются показатели кратковременной памяти [5, 10]. Относительно недавно были открыты ранее неизвестные фармакологические эффекты Кавинтона – мембраностабилизирующий и стимулирующий норадренергическую систему восходящей ретикулярной формации [3, 12].

Клиническая эффективность и безопасность препарата Кавинтон доказана более чем в 100 экспериментальных и клинических испытаниях, в которых приняли участие в общей сложности более 30 тыс. пациентов. Впервые винпоцетин с плацебо сравнил G. Lipani в 1984 г., установив, что лечение Кавинтоном в дозе 30 мг/сут на протяжении 1 мес и 15 мг/сут в течение последующих 2 мес оказалось достоверно эффективнее, чем терапия плацебо. В свою очередь, А. Szobor и М. Klein (1976) показали значимое улучшение клинического состояния у 100 исследуемых пациентов с различной цереброваскулярной патологией, получавших Кавинтон перорально и в виде комбинации (перорально и инфузионно) в дозе 30-45 мг/сут. По результатам анализа 10-летнего опыта применения Кавинтона у 967 пациентов с различной цереброваскулярной патологией, проведенного в 1992 г. Е. Burtsev и соавт., лучшие результаты были получены у лиц, находящихся на начальных стадиях развития хронической ишемии головного мозга [12].

Метаанализ рандомизированных двойных слепых плацебо контролированных исследований, проведенных в Италии и Германии (в общей сложности 731 пациент), показал улучшение состояния в виде уменьшения расстройств внимания, памяти и настроения у 85% (вт. ч. у 51% — значительное улучшение) пациентов с хроническим нарушением мозгового кровообращения (ХНМК), принимавших Кавинтон, против 62% (у 20% — значительное улучшение) лиц группы плацебо (Z. Nagy, 1998).

В целом результаты метаанализа современных исследований свидетельствуют в пользу того, что Кавинтон обладает дозозависимым действием: клинически выраженный эффект от применения винпоцетина отмечается начиная с суточной дозы 15 мг и усиливается при ее повышении до 30-60 мг (З.А. Суслина, 2002), а также при увеличении длительности курса лечения. Эти данные послужили основой создания новой формы препара-- Кавинтон форте. Накопленные на текущий момент сведения позволяют утверждать, что парентеральный путь введения на старте лечения винпоцетином обеспечивает более быстрый и выраженный терапевтический эффект, поэтому для большей эффективности лечения рекомендуется придерживаться схемы ступенчатой терапии [12, 14].

ЕБЫЛА предложена следующая схема введения препарата: начинается лечение с внутривенных капельных инфузий раствора Кавинтона в дозе 20-25 мг, далее 30, 40, 50, 50, 50, 50 мг со скоростью

введения до 80 капель/мин в течение 7 дней с последующим переходом на Кавинтон форте по 1 таблетке (10 мг) 3 р/день в течение 11 нед. При цереброваскулярной патологии целесообразно проводить подобные курсы терапии 2-3 раза в год.

Крайне интересные данные удалось получить в ходе реализации многоцентровой клинико-эпидемиологической программы КАЛИПСО (КАвинтон в ЛечениИ Пациентов с хроническим нарушением мозгового кровообрашения: диСциркулятОрной энцефалопатией на фоне артериальной гипертонии), в которой были задействованы 4865 пациентов с ХНМК в возрасте 31-85 лет из разных городов Российской Федерации; 943 участника прошли курс лечения новыми формами Кавинтона и Кавинтона форте по модифицированной схеме на протяжении 97 дней. В результате было зарегистрировано статистически значимое снижение количества жалоб на головную боль (на 82%), несистемное головокружение (на 75%), нарушение памяти (на 41%), шум в ушах (на 46%), ухудшение настроения (на 68%) и нарушения походки (на 52%) (p<0,001) по сравнению с началом лечения в соответствии с оценкой по шкалам Тиннетти и MMSE. Наиболее выраженная положительная динамика наблюдалась в отношении регресса глазодвигательных нарушений, нистагма, вестибулоатаксического и амиостатического синдромов. В целом лечение новыми формами Кавинтона (25 мг / 5 мл и 50 мг / 10 мл) и Кавинтона форте (10 мг № 90) в исследуемых дозах по предложенной схеме характеризовалось как безопасное и хорошо переносилось больными.

Несомненно, весомые преимущества Кавинтона – хороший профиль безопасности, в т. ч. при длительном применении. Побочные эффекты при назначении винпоцетина носят слабовыраженный характер и чаще всего проявляются в виде головокружения и головной боли, которые удается предупредить за счет уменьшения скорости внутривенного введения препарата (до 80 капель/мин). Так, в работе Т. Регенуі и соавт. показано, что прием этого средства в дозе 15 мг/сут на протяжении 1 года не сопровождается значимыми изменениями в миокарде или случаями аритмии [15]. Аналогичные результаты получены при проведении клинического испытания III фазы (n=8000) в 1420 центрах [16]. Несколько позже С. Farsang и соавт. в 2-летнем двойном слепом рандомизированном плацебо контролированном исследовании подтвердили, что длительный пероральный прием Кавинтона не приводит к возникновению аритмий у пациентов с хроническими заболеваниями сердца [16]. Похожие результаты были получены во время метаанализа Z. Nagy и соавт. в 1998 г. – пероральное, а также парентеральное введение Кавинтона не оказывало значимого влияния на сердечный ритм и проводимость даже при наличии сопутствующих факторов риска развития аритмии. Тем не менее при наличии у пациента хронических заболеваний сердца, нарушений проводимости и электролитных сдвигов внутривенный этап лечения Кавинтоном необходимо проводить под контролем ЭКГ-мониторинга.

Необходимо учитывать, что Кавинтон не влияет на функцию печени, в т. ч. на систему ферментов, участвующих в метаболизме

лекарственных веществ, а также на работу почек, что делает маловероятными лекарственные взаимодействия и позволяет использовать винпоцетин в обычных дозировках даже у больных с сопутствующей печеночной или почечной недостаточностью. В то же время принципиальное значение имеет доступная стоимость препарата Кавинтон, что наряду с клинической эффективностью и хорошим профилем переносимости позволило ему выйти в лидеры среди нейрометаболических препаратов, использованных для лечения 532 пациентов с дисциркуляторной энцефалопатией I и II стадии (Е.И. Чуканова, 2003).

35-летний опыт применения и более 100 научных работ подтвердили высокую и прогнозируемую терапевтическую эффективность, хорошую переносимость и безопасность Кавинтона. Возможность его длительного применения в различных возрастных группах даже при наличии сопутствующей патологии, а также, что немаловажно, высокая фармакоэкономическая эффективность делают Кавинтон рациональным средством комплексного вазотропного, гемореологического и нейрометаболического действия, используемым в лечении ГЭ для эффективной нейропротекции.

Литература

- 1. Ганнушкина И.В., Лебедева Н.В. Гипертоническая энцефалопатия /АМН СССР. М.: Медицина, 1987 224 с
- Эниня Г.И., Пуриня И.В., Тимофеева Т.Н. Влияние кавинтона, трентала, сермиона и курантила на скорость кровотока в отдельных участках мозговых артерий. — Журн. неврол. и психиатр. 1992. — 94; 1: 13-15.
- Hayakawa M. Effect of vinpocetine on red blood cell deformability in stroke patients. Arzneim-Forsch. 1992. – 42: 4: 425-427.
- Хорват Ш. Кавинтон в терапии хронической недостаточности мозгового кровообращения. Orvosi Hetilap. 2001; 8: 383-389.
- Hindmarch I. Calcium antagonist activity of vinpocetine and vincamine in several models of cerebral ischemia. Drug Dev. Res. 1988. – 14: 3-4: 297-304.
- Drug Dev. Res. 1988. 14; 3-4: 297-304.
 Kiss B., Szporny L. On the possible role of central monoaminergic systems in the central nervous system actions of vinpocetine. Drug Dev. Res. 1988; 14: 263-279.
- Ley Beth M. Vinpocetine: revitalize your brain with periwinkle extract. BL Publications, Detroit Lakes MN, 2000; р. 17.
 Фритас Г.Р., Богуславский Дж. Первичная профилактика инсульта. Журн. неврол. и психиатр. 2001; 1: 7-
- 21 (приложение «Инсульт»).
 9. Kiss B., Karpati E. Mechanism of action of vinpocetine. Acta Pharm. Hung. 1996; 66-5: 213-224.
- Moldvai I., Temesvari-Major E., Szantay C.J. et al. Synthesis of vinca alkaloids and related compounds. Part 84. Sulfonamide derivatives of some vinca alkaloids with cardiovascular activity. 1997; 330-6: 190-198.
- Lakics V., Sebestyen M.G., Erdo S.L. Vinpocetine is a highly potent neuroprotectant against veratridin-induced cell death in primary cultures of rat cerebral cortex. Neirosci. Lett. 1995; 185-2: 127-130.
- Miyazaki M. The effect of a cerebral vasodilatator vinpocetine on cerebral vascular resistance evaluated by the Doppler ultrasonic technique in patients with cerebrovascular diseases. Angiology. 1995; 46-1: 53-58.
- cular diseases. Angiology. 1995; 46-1: 53-58.

 13. Burtsev E.M., Savkov V.S., Shprakh V.V., Burtsev M.E.
 10-year experience with using Cavinton in cerebrovascular disorders. Zh Nevropatol Psikhiatr Im S S Korsakova.
 1992: 92 (1): 56-60
- Чуканова Е.И. Кавинтон в комплексном лечении пациентов с хронической цереброваскулярной недостаточностью. Журнал неврологии и психиатрии им. Корсакова. 2009: № 9: с. 35.
- 15. Perenyi T., Buday G., Kerkovits G. et al. The effect of Cavinton on patients susceptible to arrhythmia studied by ECG monitoring. Orv. Hetil. 1983; vol. 124 (47): 2875-
- Ebi O. Open-labeled phase III clinical trials with vinpocetine in Japan. Ther. Hung. 1985; vol. 33 (1): 41-49.
- Farsang C., Kertesz G., Banki M.C. et al. Effect of two years' Cavinton treatment on the ECG. Ther. Hung. 1987; vol. 35 (3): 125-128.
- Дадашева М.Н. Алгоритм терапии дисциркуляторной энцефалопатии у больных с артериальной гипертензией в общей врачебной практике. Неврология. Психиатрия. 2009; т. 17: № 20.
- Ощепкова Е.В. Гипертоническая энцефалопатия: принципы профилактики и лечения. Consilium Medicum. 2004; т. 06: № 2.

№ 18 (271) • Вересень 2011 р.