
В.Г. Майданник, академик НАМН Украины, д.м.н., профессор, заведующий кафедрой педиатрии

Применение сальбутамола (альбутерола) в клинической практике: обзор литературы

В настоящее время при лечении заболеваний органов дыхания часто используются лекарственные средства, действующие на отдельные патогенетические звенья болезней. В частности, применяют мукоактивные препараты. В 2010 году итальянские авторы детализировали их механизмы действия и классифицировали в четыре группы – экспекторанты, мукорегуляторы, муколитики, мукокинетики (Balsamo et al., 2010). Указанные препараты существенно влияют на состояние бронхиальной слизи, которая представляет собой гель со свойствами как эластичного твердого тела, так и вязкой жидкости (Чикина С.Ю., Белевский А.С., 2012а).

При гиперсекреции муцина и уменьшении объема жидкости в его составе концентрация твердых веществ повышается до 15%, что приводит к увеличению вязкости муцинового геля, более прочному связыванию его с поверхностью бронхиального эпителия и замедлению скорости движения бронхиального секрета. Муциновый слой служит барьером для различных микроорганизмов, взаимодействуя химическим путем с протеинами микробных клеток. Однако поры в муциновой сети слишком велики для вирусов, поэтому последние легко проникают сквозь муциновый барьер. Муцин МUC5AC обеспечивает барьерную функцию и клиренс в проксимальных дыхательных путях, а муцин MUC5B - в дистальных. При заболеваниях дыхательных путей их соотношение может меняться. Так, при аллергическом воспалении у больных бронхиальной астмой (БА) продукция MUC5AC возрастает в 40-200 раз, а продукция МUС5В - в 3-10 раз. Напротив, при хронической обструктивной болезни легких и муковисцидозе усиливается продукция МUC5В железами подслизистого слоя.

Самым мощным стимулятором секреции муцинов является аденозинтрифосфат (АТФ). В небольших концентрациях он постоянно присутствует в поверхностном слое жидкости бронхиального эпителия, благодаря чему муцины секретируются непрерывно для поддержания нормальной барьерной функции эпителия.

Однако когда секреция муцинов повышается, избыток слизи обтурирует просвет дыхательных путей. Муцины накапливаются в секреторных гранулах

в дегидратированном виде и после выделения из гранул впитывают воду, увеличиваясь в объеме в несколько сотен раз. Слишком быстрое выделение муцинов из гранул может привести к истощению поверхностного слоя жидкости, в результате чего образуется густая резинообразная слизь, которую невозможно разбавить водой, так как муциновая сеть уже сформировалась.

Учитывая вышеизложенное, в настоящее время при лечении заболеваний органов дыхания все больше используются фиксированные комбинации препаратов, которые способны влиять сразу на несколько механизмов мукостаза. Однако лекарственных средств с указанным механизмом действия очень мало (Шмелева Н.М., Шмелев Е.И., 2013).

Фиксированная комбинация, согласно современным требованиям, должна соответствовать определенным стандартам (Balsamo et al., 2010):

- 1. Препарат должен содержать не более трех активных ингредиентов из различных фармакологических групп и не более одного активного ингредиента из каждой фармакологической группы.
- 2. Каждый активный ингредиент должен содержаться в эффективной и безопасной концентрации и способствовать лечению, для которого используется данный продукт.
- 3. Должны учитываться возможные неблагоприятные реакции компонентов.

Одним из немногих фиксированных комбинированных препаратов, который устраняет мукостаз и соответствует современным требованиям, является Аскорил (Glenmark Pharmaceuticals Ltd.). В его состав входят муколитик (бромгексин), муколитик-мукокинетик (гвайфенезин) и β_2 -адреномиметик (сальбутамол). Все компоненты обладают синергичным действием, улучшая мукоцилиарный клиренс, регулируя секрецию мокроты и ее реологические свойства, снижая избыточный тонус бронхов. В результате происходят быстрое очищение бронхов от измененного трахеобронхиального секрета и уменьшение/исчезновение кашля (Шмелева Н.М., Шмелев Е.И., 2013; Johnson, Bounds, 2018).

Особый интерес в составе Аскорила вызывает сальбутамол, который в полной мере соответствует всем требованиям к идеальному бронхолитику. Селективность действия сальбутамола относительно β_2 -рецепторов достойна удивления: если сравнивать ее в пределах класса β_2 -агонистов короткого действия, то сальбутамол является наиболее селективным: его сродство к β_2 -рецепторам в несколько раз больше, чем фенотерола, и более чем в 1300 (!) раз больше, чем орципреналина.

Сальбутамол стал ключевым лекарственным средством в респираторной медицине с тех пор, как в 1968 году был разработан Sir David Jack и соавт. (Brittain et al., 1968). Более подробно препарат и его свойства были описаны в 1969 году, и с тех пор он стал широко использоваться для лечения обструктивных болезней дыхательных путей (Cullum et al., 1969; Daly et al., 1971; Zwi et al., 1971; Schumann, Herxheimer, 1971).

Общеизвестно, что сальбутамол (альбутерол) используется для лечения и профилактики бронхоспазма у пациентов с обратимыми обструктивными изменениями дыхательных путей. Он также показан для профилактики бронхоспазма, вызванного физической нагрузкой (Price, Clissold, 1989; Gardiner, Wilkinson, 2019; Orth et al., 2018; Abaya et al., 2018). Кроме того, сальбутамол, будучи β_2 -агонистом, способен уменьшать симптомы, включая кашель, у людей с установленой обструкцией дыхательных путей (Becker et al., 2015).

Фармакодинамика

Сальбутамол (альбутерол) - селективный агонист β,-адренорецепторов, который стимулирует преимущественно те из них, что локализуются в бронхах, миометрии, кровеносных сосудах (Price, Clissold, 1989; Johnson, Bounds, 2018; Almadhoun, Sharma, 2018; Condella et al., 2018). Полагают, что связывание β_{2} -адренорецепторов с β_{2} -агонистами приводит к трансдукции сигнала и активации аденилатциклазы. Данный фермент превращает АТФ в циклический аденозинмонофосфат (цАМФ), который, в свою очередь, активирует протеинкиназу типа А. В активированном состоянии протеинкиназа типа А отвечает за разнообразные эффекты, изменяющие функции гладких мышц. Результатом описанных эффектов является прямая релаксация гладких мышц дыхательных путей, приводящая к последующей бронходилатации. Этот механизм обеспечивает антиастматическое действие.

Кроме того, сальбутамол, как агонист β_2 -адренергического рецептора, также увеличивает проводимость больших Ca^{2+} -чувствительных каналов K^+ в гладких мышцах дыхательных путей, что приводит к гиперполяризации и релаксации мембраны. Это происходит, по крайней мере частично, с помощью механизмов, не зависящих от активности аденилатциклазы и цАМФ, и может включать регулирование емкостного входа Ca^{2+} с помощью небольших G-белков.

При ингаляционном введении сальбутамол действует в основном на β_2 -адренорецепторы бронхов, мало влияя на β_2 -адренорецепторы иной локализации. Препарат оказывает выраженное бронхолитическое действие, вызывая расширение бронхов, купирует и предупреждает бронхоспазм. Хотя сальбутамол (альбутерол) влияет на β_1 -адренорецепторы, он мало

В.Г. Майданник

влияет на частоту сердечных сокращений (Johnson, Bounds, 2018; Almadhoun, Sharma, 2018; Condella et al., 2018).

Сальбутамол способен увеличивать мукоцилиарный клиренс, повышать секрецию слизистых желез и продукцию сурфактанта. Он оказывает дозозависимое бронхолитическое действие (при наличии бронхообструкции), ингибирует продукцию и высвобождение медиаторов немедленной гиперчувствительности из клеток, особенно тучных, предотвращая тем самым выделение из последних медиаторов аллергии и воспаления (гистамин, SRSA), а также факторов хемотаксиса из нейтрофилов (Зайцев А.А. и соавт., 2015; Price, Clissold, 1989).

Как известно, хемотаксис является феноменом миграции клеток к бактериальным пептидам и комплементу (С5а), что является важным этапом миграции нейтрофилов в зону воспаления. Большинство исследований эффектов β_2 -агонистов в отношении хемотаксиса нейтрофилов засвидетельствовало его снижение (Silvestri M. et al., 1999; Perkins et al., 2004). Становится очевидным, что β_2 -агонисты обладают противовоспалительными свойствами как *in vitro*, так и *in vivo* (Sitkauskiene et al., 2005).

В другом исследовании было показано, что вводимый интраназально сальбутамол в сравнении с плацебо облегчал симптомы и подавлял высвобождение гистамина и триптазы, вызванных заражением цАТФ (Р=0,048 и Р=0,020 соответственно) (Russo et al., 2005). Кроме того, чихание, вызванное цАТФ, также подавлялось предварительной обработкой сальбутамолом (Р=0,004). Следовательно, интраназальная форма препарата подтвердила гипотезу о том, что сальбутамол может играть дополнительную защитную роль в дыхательных путях, ингибируя активацию тучных клеток (Russo et al., 2005).

Помимо этого, препарат стимулирует митотическую активность и модулирует холинергическую нейротрансмиссию. Все эти свойства позволяют использовать сальбутамол в качестве модулятора мукоцилиарного клиренса и бронхолитического агента (Зайцев А.А. и соавт., 2013, 2015).

Фармакокинетика

Продолжительность циркуляции в крови на терапевтическом уровне составляет 3-9 ч, затем концентрация постепенно снижается. При приеме внутрь абсорбция высокая. Прием пищи снижает скорость абсорбции, но не влияет на биодоступность. После однократного приема внутрь 4 мг сиропа или таблеток \mathbf{C}_{\max} – 18 нг/мл; после приема внутрь таблеток в дозе 2 мг каждые 6 ч \mathbf{C}_{\max} – 6,7 нг/м; после приема внутрь таблеток

ОГЛЯД

в дозе 4 мг каждые 6 ч $C_{\rm max}$ – 14,8 нг/мл; после приема внутрь пролонгированных лекарственных форм в дозе 4 мг каждые 12 ч $C_{\rm max}$ – 6,5 нг/мл (Du et al., 2002).

Биодоступность принятого внутрь сальбутамола составляет 50% (!) (Price, Clissold, 1989). После ингаляции приблизительно 10-20% действующего вещества достигает мелких бронхов, остальная часть оседает в верхних дыхательных путях (Morgan et al., 1986).

Связывание с белками плазмы сальбутамола в диапазоне концентраций от 0,05 до 2,0 мг/л составляет от 7 до 64% (в среднем 10%). Кажущийся объем распределения сальбутамола у человека составляет 156 л, что указывает на экстенсивное внесосудистое поглощение (Price, Clissold, 1989).

Препарат выводится почками (69-90%), преимущественно в виде неактивного фенолсульфатного метаболита (60%) в течение 72 ч и с желчью (4%). Большая часть принятого сальбутамола выводится из организма в течение 72 ч (Price, Clissold, 1989; Mohamed et al., 1999).

Эффект сальбутамола развивается быстро и длится 4-5 ч. Максимальная быстрота действия (снятие бронхоспазма) достигается при ингаляционном пути введения. Бронходилатация наступает уже на 4-5-й минуте, возрастает к 20-й минуте и достигает максимума через 40-60 мин. Наиболее выраженный результат получают после ингаляции двух доз, дальнейшее повышение дозы не приводит к росту бронхиальной проходимости, но увеличивает вероятность развития побочных явлений (тремор, головная боль, головокружение).

Следует также отметить, что клинический эффект сальбутамола при БА у детей существенно зависит от фармакокинетики, в частности от использования (R)- или (S)-альбутерола (Maier et al., 2007). Результаты исследования показали, что клиренс и объем распределения (R)-альбутерола были в несколько раз выше, чем у (S)-альбутерола. Фармакокинетика (R)-альбутерола была сходной после введения левальбутерола или рацемического альбутерола и была линейной в исследуемом диапазоне доз (0,31-0,63 мг распыленной дозы). Присутствие (S)-альбутерола существенно не изменяет фармакокинетику (R)-альбутерола. Это позволяет предположить, что эффекты (S)-альбутерола могут быть связаны с внутренней фармакологией данного изомера (Maier et al., 2007).

Сальбутамол обладает рядом метаболических эффектов: снижает содержание калия в плазме, влияет на гликогенолиз и выделение инсулина, оказывает гипергликемический (особенно у пациентов с БА) и липолитический эффекты, увеличивает риск развития ацидоза (Шмелева Н.М., Шмелев Е.И., 2013).

Способ применения и дозы

В настоящее время в клинической практике доступно применение различных форм препарата (аэрозоли, небулы, инъекции, таблетки). В исследовании Bonner и соавт. (2006) было показано, что пероральный сальбутамол является эффективным бронходилататором и что, несмотря на неоднократные рекомендации в пользу вдыхаемой формы, сальбутамол для перорального применения продолжает назначаться в определенных условиях. Использование перорального β,-агониста было связано с более серьезными симптомами. Это исследование подтверждает продолжающееся широкое использование перорального β_2 -агониста для лечения детей в популяции с низким доходом и высокой распространенностью астмы.

Хотя пероральный сальбутамол часто оказывался менее эффективным, чем вдыхаемый, он все же обеспечивает клинически значимую бронходилатацию и особенно полезен у тех пациентов, которые не могут координировать использование ингаляторов (Price, Clissold, 1989). Парентеральные формы сальбутамола, как правило, предназначены для лечения тяжелых приступов бронхоспазма и являются одними из препаратов выбора в этих опасных для жизни ситуациях (Price, Clissold, 1989).

Доза таблеток альбутерола у педиатрических пациентов в возрасте до 6 лет составляет 0,3-0,6 мг/кг/сут, разделенная на три приема – каждые 8 ч в течение дня. Рекомендуется не превышать

дозу 12 мг/сут. Для детей 6-12 лет рекомендуется назначать 2 мг каждые 6-8 ч с суточным максимумом 24 мг. Пациентам старше 12 лет назначают по 2-4 мг каждые 6-8 ч в максимальной суточной дозе 32 мг (Larsson S., Svedmyr, 1977; Grimwood et al., 1981; Louridas et al., 1983; Johnson, Bounds, 2018).

Клиническое применение

Показаниями к применению сальбутамола в клинической практике являются купирование и предупреждение развития бронхоспазма у пациентов с обратимой обструкцией дыхательных путей (БА, хронический бронхит, эмфизема легких) и другими заболеваниями, протекающими с бронхоспазмом.

Острый бронхит

В настоящее время острый бронхит рассматривают как остро/подостро возникшее заболевание преимущественно вирусной этиологии, ведущим клиническим симптомом которого является кашель, продолжающийся не более 2-3 нед и, как правило, сопровождающийся конституциональными симптомами и симптомами инфекции верхних дыхательных путей (Лещенко И.В., 2013; Баранов А.А. и соавт., 2016).

Для медикаментозной терапии заболевания применяются лекарственные средства, подавляющие кашель, особенно при изнуряющей его форме. В этой ситуации назначаются бронходилататоры (уровень доказательств А) (Лещенко И.В., 2013).

Продолжение на стр. 26.

ОГЛЯД

В.Г. Майданник, академик НАМН Украины, д.м.н., профессор, заведующий кафедрой педиатрии Национального медицинского университета им. А.А. Богомольца, г. Киев

Применение сальбутамола (альбутерола) в клинической практике: обзор литературы

Продолжение. Начало на стр. 24.

В одном рандомизированном исследовании 46 пациентов разделили на 4 группы: больные 1-й группы получали ингаляции альбутерола (сальбутамола) и плацебо в капсулах, 2-й группы – ингаляции альбутерола и эритромицин внутрь, 3-й группы – эритромицин и ингаляции плацебо, 4-й группы – плацебо в капсулах и ингаляции плацебо. Результаты исследования показали, что кашель исчезал у большего числа больных, получавших альбутерол, в сравнении с больными, получавшими эритромицин или плацебо (39 и 9% соответственно; Р=0,02). Причем пациенты, лечившиеся альбутеролом, смогли раньше приступить к работе (Р=0,05) (МасКау, 1996).

При сравнении эффективности микстур с эритромицином и альбутеролом у 42 пациентов получены следующие результаты. Через 7 дней кашель исчезал у 59% больных, получавших альбутерол, и у 12% лиц, получавших эритромицин (P=0,002). У курящих полное исчезновение кашля отмечено в 55% случаев в группе пациентов, которым назначались ингаляции альбутерола; в группе больных, лечившихся эритромицином, он не исчезал полностью ни у кого (P=0,03) (MacKay, 1996).

Следовательно, в двух приведенных исследованиях, каждое из которых было выполнено на малом числе больных, показано, что альбутерол более эффективен, чем плацебо или эритромицин, при остром бронхите. При этом нет данных, подтверждающих использование β_2 -агонистов у детей с острым кашлем, у которых нет признаков ограничения воздушного потока. Существует также мало доказательств того, что рутинное использование β_2 -агонистов полезно для взрослых с острым кашлем.

Таким образом, сальбутамол является достаточно эффективным средством при остром бронхите с синдромом бронхиальной обструкции. При этом помимо пероральной формы препарата часто применяют дозированный аэрозольный ингалятор со спейсером с соответствующей лицевой маской или мундштуком. Его обычно назначают до 3 р/сут по 0,15 мл/кг (максимально 2,5 мл) (уровень доказательств С) (Баранов А. А. и соавт., 2016).

По данным Кокрановского руководства, Chavasse и соавт. (2002) обратили внимание, что исследования были заметно неоднородными и сравнения между ними были ограничены. Улучшение частоты дыхания, оценки симптомов и насыщения кислородом было отмечено только в одном исследовании в отделении неотложной помощи после двух небулайзеров сальбутамола, но это не повлияло на госпитализацию. После приема сальбутамола наблюдалось снижение реактивности бронхов. К сожалению, не было отмечено значительной пользы от регулярного приема β_2 -агонистов в виде ингаляционного сальбутамола на основании оценки симптомов при лечении рецидивирующих хрипов у детей в первые два года жизни, хотя имеются противоречивые доказательства (Chavasse et al., 2002). В настоящее время дальнейшие исследования должны проводиться только в том случае, если группа

пациентов может быть четко определена и имеется подходящий параметр результата, способный измерять реакцию.

Бронхиолит

Как известно, бронхиолит является наиболее распространенной причиной госпитализации детей. Так, только в США ежегодно проводится более 100 тыс. госпитализаций, что составляет примерно 3% всех детей в течение первого года жизни (Smyth, Openshaw, 2006; Hasegawa et al., 2013; Condella et al., 2018).

В 2014 году эксперты Американской академии педиатрии (ААР) опубликовали руководство, в котором были представлены клинические рекомендации по диагностике и лечению бронхиолита у детей (Ralston et al., 2014). В последние годы эти рекомендации были существенно дополнены и доработаны (Кои et al., 2018; O'Brien et al., 2018). На основании представленных рекомендаций Condella и соавт. (2018) проанализировали данные 17-центрового обсервационного исследования 1016 младенцев (возраст <1 года), госпитализированных с бронхиолитом в период с 2011 по 2014 год, у которых для лечения использовали альбутерол. Согласно результатам, половина детей (n=508) получала по крайней мере одно лечение альбутеролом до поступления. В 17 больницах использование альбутерола до поступления в больницу варьировало от 23 до 84%. В скорректированном анализе независимыми предикторами применения альбутерола были следующие: возраст ≥2 мес (возраст 2,0-5,9 мес: отношение шансов, ОШ 2,09; 95% доверительный интервал, ДИ 1,45-3,01; возраст 6,0-11,9 мес: ОШ 2,89; 95% ДИ 1,99-4,19); предшествующее использование бронходилататора (ОШ 1,89; 95% ДИ 1,24-2,90); наличие хрипов, задокументированных перед поступлением (ОШ 3,94; 95% ДИ 2,61-5,93). Напротив, использование альбутерола было менее вероятным среди тех, у кого прошло ≥7 дней от начала проблем с дыханием (ОШ 0,66; 95% ЛИ 0,44-1,00) и отмечалась лихорадка, о которой сообщали родители (ОШ 0,75; 95% ДИ 0,58-0,96). На основании этих результатов авторы сделали вывод, что они согласны с текущими рекомендациями по применению альбутерола у всех детей с бронхиолитом, однако разделение пациентов на возможные подгруппы респондеров может улучшить эффективность лечения благодаря исследованию детей с выявленными характеристиками (Condella et al., 2018).

Бронхиальная астма

При легком и среднетяжелом обострениях БА оптимальным и наиболее экономичным методом быстрого устранения бронхиальной обструкции является многократное применение ингаляционных β,-агонистов быстрого действия (от 2 до 4 ингаляций каждые 20 мин в течение первого часа) (уровень доказательств А). После первого часа необходимая доза будет зависеть от степени тяжести обострения. Легкие обострения купируются 2-4 дозами β, -агонистов с помощью дозированных аэрозольных ингаляторов каждые 3-4 ч; обострения средней тяжести требуют 6-10 доз каждые 1-2 ч. Использование комбинации

 β_2 -агониста и антихолинергического препарата сопровождается снижением частоты госпитализаций (уровень доказательств A) и более выраженным улучшением пиковой скорости выдоха и объема форсированного выдоха за 1 с (уровень доказательств B). Дозы препаратов подбирают в зависимости от ответа конкретного пациента, и в случае отсутствия или наличия сомнений в ответе на лечение необходимо направить пациента в учреждение, где может быть проведена интенсивная терапия.

Бронхолитическое действие сальбутамола при стабильной БА связано с концентрацией в крови от 5 до 20 нг/мл для детей и взрослых (Evans et al., 1971; Janson et al., 1992; Rotta et al., 2010). Многократные дозы вдыхаемого сальбутамола, которые могут быть использованы при остром приступе БА, приводят к концентрации в крови между 20 и 40 нг/мл (Evans et al., 1971; Janson et al., 1992; Rotta et al., 2010). Концентрация сальбутамола в крови, связанная с побочными реакциями у детей, неизвестна. У взрослых токсичность сальбутамола связана с концентрацией в крови >30 нг/мл с предполагаемым летальным уровнем >160 нг/мл (Regenthal et al., 1999). Очень высокие концентрации сальбутамола в крови (196-586 нг/мл) были зарегистрированы у детей, получавших препарат внутривенно и искусственную вентиляцию легких (ИВЛ) при тяжелой БА (Bohn et al., 1984; Penna et al., 1993). Внутривенные дозы сальбутамола, которые получали дети в этих случаях, соответствовали тем, что обозначены в текущих рекомендациях по внутривенному введению сальбутамола.

Следует отметить, что в случае обострений тяжелой БА, которые не поддаются лечению с помощью ингаляционных и пероральных форм, наиболее полезными все еще остаются внутривенные препараты. Обзор доступных рандомизированных контролированных испытаний (РКИ) показывает, что болюсное внутривенное введение сальбутамола может уменьшить симптомы и ускорить выздоровление (Neame et al., 2015).

Необходимо подчеркнуть, что внутривенно вводимый сальбутамол обычно используется для лечения детей с тяжелой астмой, не реагирующих на ингаляционную терапию β_2 -агонистами (Starkey et al., 2014; Ullmann et al., 2015). Тем не менее в этой ситуации мало данных клинических испытаний, демонстрирующих его эффективность. Кроме того, существуют серьезные опасения, что рекомендации по внутривенному введению сальбутамола для детей с острой астмой являются чрезмерными и неоправданно повышают вероятность побочных реакций, таких как лактоацидоз и тахикардия, которые, увеличивая дыхательную нагрузку, усугубляют дыхательную недостаточность (Starkey et al., 2014; Ullmann et al., 2015).

Недавно были опубликованы результаты применения разных доз альбутерола в ингаляциях для купирования астматического статуса у детей (Phumeetham et al., 2015). Так, 42 пациента (22 мальчика и 20 девочек) получали высокие дозы альбутерола в ингаляции: 23 ребенка получали 75 мг/ч и 19-150 мг/ч

в течение 22,3 ч. После лечения частота сердечных сокращений увеличилась, а диастолическое и среднее артериальное давление были значительно ниже во время распыления в сравнении с началом терапии или при выписке из стационара (Р<0,05). Ни одному пациенту не потребовалась инфузионная терапия или инотропная поддержка, а у одного имели место самоограниченные преждевременные сокращения желудочков. Гипокалиемия возникла у 5 из 33 детей, у которых были измерены сывороточные электролиты, но они не нуждались в добавках. Один пациент нуждался в эндотрахеальной интубации после начала распыления, а семь (16,7%) – в неинвазивной вентиляции легких. Продолжительность пребывания в отделении реанимации составила 2,3±1,7 дня; летальных исходов зарегистрировано не было (Phumeetham et al., 2015). Таким образом, высокие дозы непрерывного распыления альбутерола связаны с низкой частотой последующей ИВЛ и довольно короткой продолжительностью пребывания в отделении реанимации без значительной токсичности.

У детей со стабильным астматическим синдромом альбутерол, вводимый с помощью дозированного ингалятора с использованием неклапанного спейсера, вызывает бронходилататорный ответ, аналогичный ответу спейсера с дыхательным клапаном, требующим давления открытия (с потоками от 2 до 32 л/мин), который даже у малышей с бронхиальной обструкцией может легко применяться (Rodriguez-Martinez et al., 2012).

Необходимо обратить внимание еще на одну работу, представленную Wisecup и соавт. (2015). Как известно, диастолическая гипотензия является частым явлением среди пациентов, которые получают непрерывное распыление альбутерола при астматическом статусе. Авторами было показано, что диастолическая гипотензия, определяемая как значение <50 мм рт. ст. или <5 процентиля от нормы для возраста, развивается у 90% пациентов, и была продемонстрирована положительная корреляция с увеличением дозы альбутерола. Общее медианное время до появления гипотензии составило 4 ч и было значительно ниже среди пациентов, поступивших в отделение интенсивной терапии (Р=0,005). Вероятность возникновения гипотензии была на 82% ниже среди пациентов, которые получали инфузионную терапию до непрерывного распыления альбутерола.

Таким образом, бронходилататоры не должны быть единственным или основным компонентом терапии БА. Если пациент с БА не отвечает на терапию сальбутамолом, рекомендуется применять ингаляционные глюкокортикоиды для достижения и поддержания контроля симптомов. Недостаточный ответ на терапию сальбутамолом может быть сигналом к срочному медицинскому вмешательству.

При анализе одного Кокрановского систематического обзора по применению внутривенных β_2 -агонистов при БА (15 исследований; N=584, все возрастные группы) был сделан вывод, что ни внутривенный сальбутамол, ни внутривенный тербуталин не были более эффективны в улучшении пиковой скорости выдоха, чем ингаляционный сальбутамол (Travers et al., 2001). В обзоре было несколько исследований, сообщающих об улучшении результатов, таких как время восстановления или легочный индекс, хотя эти показатели не были статистически значимыми.

В другом обзоре было показано, что внутривенные β_2 -агонисты (сальбутамол) применялись в дополнение к ингаляционной терапии в трех исследованиях,

26

ПУЛЬМОНОЛОГІЯ

ОГЛЯД

два из которых относились к детям (N=56) (Travers et al., 2012). К сожалению, также не удалось сделать обоснованные выводы, кроме того, что должно быть проведено больше исследований для оценки эффективности и безопасности внутривенного введения сальбутамола.

Острый респираторный дистресс-синдром

ОРДС характеризуется диффузным воспалением альвеолярно-капиллярной мембраны легкого в ответ на различные легочные и внелегочные поражения (Wu et al., 2018). Это заболевание оказывает существенное влияние на общественное здравоохранение в связи с высокой его распространенностью в мире. Так, частота ОРДС составляет 78,9 на 100 тыс. случаев в год в США, 16800 случаев в год в Великобритании и 31,4 на 100 тыс. случаев в год в Северной Европе (Wu et al., 2018). Несмотря на успехи в понимании механизма и лечения, ОРДС все еще характеризуется высокой смертностью -40-60% (Wu et al., 2018). Ключевым звеном развития воспаления в легочной ткани при ОРДС является аккумуляция нейтрофилов в легких. При этом снижается их концентрация в системном кровотоке. Активация лейкоцитов и продукция провоспалительных медиаторов из множественных клеточных источников приводят как к локальному, так и к системному повреждению тканей (Perkins et al., 2008; Matthay, Zemans, 2011).

Wu и соавт. (2018) в ходе метаанализа РКИ показали эффективность лечения ОРДС альбутеролом, оценивая результаты снижения 28-дневной смертности и дни без использования ИВЛ. Согласно полученным данным, три РКИ с участием 646 пациентов соответствовали критериям включения. При этом не наблюдалось значительного снижения смертности за 28 дней (разница риска 0,09; P=0,07). Однако количество дней без использования ИВЛ и дней без органной недостаточности было значительно ниже у пациентов, получавших альбутерол (средняя разница -2,20; Р<0,001 и средняя разница -1,71; Р<0,001). Таким образом, имеющиеся данные свидетельствуют о том, что лечение альбутеролом в раннем периоде ОРДС не было эффективным для увеличения выживаемости, но значительно уменьшало дни без ИВЛ и промежуток без формирования органной недостаточности.

Ранее было изучено влияние сальбутамола на гистопатологические особенности ОРДС (Yilmaz et al., 2012). В частности, на экспериментальной модели острой фазы ОРДС статистическая разница была замечена между контрольной группой и группой сальбутамола (Р=0,002) для гиалиновых мембран. Выделение лейкоцитов в группе сальбутамола снижалось, и разница была статистически значимой (Р<0,042). Кровотечение и интерстициальный/ внутриальвеолярный отек были значительно ниже в группе, получавшей 0,15 мг распыляемого сальбутамола, чем в контрольной группе. Статистически значимое различие между двумя группами было достоверным (Р<0,001). Авторы считают, что ингаляционная терапия сальбутамолом при ОРДС может быть связана с улучшением процессов, лежащих в основе воспаления (Yilmaz et al., 2012). Авторы обращают внимание, что помимо известных эффектов сальбутамола следует подчеркнуть уменьшение инфильтрации полиморфноядерных нейтрофильных лейкоцитов, интерстициального/внутриальвеолярного отека, периваскулярного и/или внутриальвеолярного

кровоизлияния и образования гиалиновой мембраны. Представленные данные подтвердили результаты более ранних исследований (Masclans et al., 1996; Perkins et al., 2007).

Недавно была опубликована важная работа, посвященная вопросу, снижает ли сальбутамол продолжительность оксигенотерапии и необходимость респираторной поддержки новорожденных с преходящим (транзиторным) тахипноэ (Moresco et al., 2016). Актуальность этой работы обусловлена тем, что преходящее (транзиторное) тахипноэ (аномально учащенное дыхание) новорожденного характеризуется высокой частотой дыхания (>60 р/мин) и признаками дыхательной недостаточности (затрудненное дыхание); оно обычно появляется в течение первых 2 ч жизни у детей, родившихся на 34-й неделе гестационного возраста или после этого срока. Хотя преходящее тахипноэ новорожденных, как правило, проходит без лечения, оно связано с синдромом хрипов в позднем детстве. Идея использования сальбутамола при преходящем (транзиторном) тахипноэ основана на результатах исследований, показавших, что β-агонисты, в частности сальбутамол, могут увеличить скорость клиренса жидкости из альвеол. В обзоре представлены и критически проанализированы имеющиеся доказательства эффективности сальбутамола в ведении новорожденных с преходящим (транзиторным) тахипноэ (Moresco et al., 2016).

Авторы проанализировали результаты трех исследований, в которые вошли 140 детей. Во всех трех исследованиях сравнивали ингалируемую дозу сальбутамола с плацебо; в одном из них новорожденным были назначены две разные дозы. В одном из исследований сальбутамол сократил продолжительность лечения кислородом новорожденных с преходящим тахипноэ. В то же время не было различий в необходимости постоянного положительного давления в дыхательных путях или потребности в ИВЛ (Moresco et al., 2016). Следовательно, результаты систематического обзора свидетельствуют, что в настоящее время недостаточно данных для определения эффективности и безопасности сальбутамола при лечении преходящих тахипноэ у новорожденных. Качество доказательств было низким из-за нехватки включенных испытаний и небольших размеров выборки.

Недавно было показано, что пероральный прием сальбутамола имеет клиническую пользу при спинальной мышечной атрофии – CMA (Khirani et al., 2017). Авторы изучили его влияние на силу дыхательных мышц у детей с различными типами СМА. Долгосрочный пероральный прием сальбутамола (23±8 мес) способствовал улучшению дыхательной функции у детей и, по-видимому, увеличению силы мышц вдоха в небольшой группе пациентов.

Таким образом, сальбутамол (альбутерол) благодаря полифункциональности и безопасности является современным высокоэффективным средством для лечения больных с нарушениями мукостаза, что подтверждено данными контролируемых исследований и материалами аналитических обзоров Кокрановского сотрудничества. Безопасность сальбутамола позволяет широко использовать его в амбулаторной практике, особенно у «кашляющих» больных, у которых применение препарата особенно эффективно. Применение сальбутамола, как правило, способствует существенной редукции симптоматики и улучшению общего состояния.

AHOHC

Міністерство охорони здоров'я України Українська медична стоматологічна академія

Нацково-практична конференція, присвячена 100-річчю від дня народження засновника кафедри факультетської терапії Максима Андрійовича Дудченка

Big наукових концепцій у mepaniï до конкретного пацієнта

29 серпня, м. Полтава

Наукова програма передбачає обговорення широкого кола питань з епідеміології, патогенезу, сучасних методів діагностики, лікування та профілактики захворювань внутрішніх органів.

Форми участі в конференції:

- 1. Усна доповідь і публікація наукової статті.
- 2. Публікація наукової статті.

Для участі в роботі конференції необхідно до 20 червня подати заявку на доповідь і статтю для публікації.

Контактні особи

І.М. Скрипник, тел.: (050) 597-49-08; e-mail: inskrypnyk@gmail.com О.М. Проніна, тел.: (0532) 60-96-12, 60-95-84, (050) 668-68-51; e-mail: visnik.umsa@ukr.net (публікація статей)

Дорогі қолеги!

Продовжуючи традицію проведення науково-практичних конференцій в столиці держави на засадах досконалості з неповторною українською гостинністю, ми працюємо над підготовкою науково-практичної конференції офтальмологів, дитячих офтальмологів та оптометристів України з міжнародною участю «РЕФРАКЦІЙНИЙ ПЛЕНЕР' 19», який відбудеться

17-18 жовтня 2019 року

Умови участі в конференції, тренінгах, конкурсах, публікаціях на сайті: www.uapo.org.ua.

Реєстрація учасників конференції і тренінгів проводиться до 15 вересня 2019 року, та обов'язкова для всіх учасників Тези доповідей надіслати на електронну пошту jannachuvalova@ukr.net до 1 вересня 2019 р.

Місце проведення:

Міжнародний конгрес-центр, Український дім, вулиця Хрещатик, 2, 02000, м. Київ, Україна.