Е.Ю. Дмитриева, А.В. Катилов, Е.С. Откаленко, Л.Н. Бровинская, городская больница «Центр матери и ребенка», Винницкий национальный медицинский университет им. Н.И. Пирогова

Спорные вопросы ультразвуковой диагностики при заболеваниях органов грудной клетки

Золотым стандартом диагностики заболеваний органов дыхания уже на протяжении целого столетия остается рентгенография органов грудной клетки. В определенных клинических ситуациях использование компьютерной томографии позволяет уточнить характер патологического процесса в грудной полости.

Эхографические данные могут существенно дополнить полученную в результате рентгенологических методов диагностики информацию, а в ряде случаев помогают выбрать адекватную тактику ведения пациента. В настоящее время ультразвуковое исследование (УЗИ) является одним из основных методов диагностической визуализации во многих областях практической медицины. К преимуществам УЗИ относятся: отсутствие ионизирующего излучения, двумерное изображение патологического участка, относительная простота исследования и быстрое получение результатов, отсутствие противопоказаний, возможность проведения у постели больного, а также возможность многократного повторения исследования без угрозы здоровью пациента, что особенно важно для детей, беременных женщин, пациентов, находящихся в отделениях интенсивной терапии.

По данным многих авторов [3, 5-7, 9-12, 14], при помощи ультразвукового метода можно получить важную информацию о состоянии мягких тканей грудной клетки, париетального и висцерального листков плевры, плевральной полости, субплевральных отделов легких, плевральных синусов, внутригрудных лимфатических узлов, органов средостения, диафрагмы. Поэтому этот метод должен входить в комплекс методов медицинской визуализации при исследовании органов грудной клетки.

Причинами недостаточного использования эхографии при заболеваниях легких прежде всего являются объективно существующие трудности в проведении данного обследования. Основной преградой на пути распространения ультразвука является костный каркас грудной клетки, который отражает значительную часть ультразвуковых сигналов, что приводит к появлению позади костных структур многочисленных акустических теней. Вторым препятствием в проведении исследования является наличие большого объема воздуха, содержащегося в легочных альвеолах [10].

Вопрос о визуализации воздушной легочной ткани в настоящее время активно обсуждается многими авторами, которые занимаются данной проблемой, и однозначного вывода по этому вопросу нет. По мнению одних авторов [1, 4, 11, 12], ультразвуковой метод позволяет четко визуализировать субплевральные отделы легких на глубину 3-4 см от поверхности легкого, сосуды и бронхиальное дерево и на формирование изображения влияет то, что легочная ткань в норме является не сухой, а постоянно увлажненной.

Сторонники другой точки зрения считают, что воздушную (неизмененную) легочную ткань визуализировать практически невозможно [8, 15], так как степень затухания ультразвука в легких на два порядка выше, чем в мягких тканях. Таким образом, получить приемлемое изображение воздушной легочной ткани нельзя даже на глубину 3-4 мм, не говоря уже о сантиметрах. Воздушное легкое проводит ультразвук еще хуже, чем просто воздух [15]. А «сосуды», визуализируемые в неизмененной легочной ткани, являются зеркальными артефактами, так как в их просвете кровоток с помощью допплеровских методик не регистрируется ни на каком расстоянии от поверхности легких, даже на сканере экспертного класса. Эти структуры не «разворачиваются», как сосуды при повороте датчика на 90°. Кроме того, при дыхании отчетливо наблюдается скольжение листков плевры относительно друг друга, а смещение этих структур в такт дыхания не отмечается - они остаются на месте, смещаясь

только при смене положения датчика. Бронхи и сосуды легкого смещаются синхронно с висцеральным листком плевры, что и наблюдается в измененной легочной ткани. Все вышеперечисленное свидетельствует в пользу того, что линейные структуры, визуализируемые за висцеральным листком плевры неизмененной легочной ткани, являются проявлениями зеркального артефакта [8].

При оценке ультразвукового изображения следует помнить, что эхогенность неизменной легочной ткани неравномерна из-за различной степени вентиляции и кровотока в верхних и нижних отделах. Поэтому несколько повышенная эхогенность верхних отделов и несколько пониженная эхогенность нижних отделов в симметричных отделах легких при условии однородности легочной паренхимы являются нормой [10].

Как известно, патологические процессы в органах грудной клетки (пневмонии, ателектазы, объемные образования доброкачественной и злокачественной природы) приводят к уменьшению воздушности и уплотнению легочной ткани, что создает возможность для прохождения ультразвука и визуализации очагов поражения, расположенных в субплевральных отделах легких [10]. Появление плеврального выпота, который часто сопровождает патологические процессы, служит дополнительным акустическим окном и создает наиболее оптимальные условия для проведения эхографии.

На первом этапе исследования для определения локализации и характера патологического процесса в легких, плевральных полостях, средостении, диафрагме рекомендуется проводить комплексное лучевое исследование; чаще начинают со стандартной обзорной рентгенографии органов грудной клетки в прямой и боковой проекциях. Затем полученные при ультразвуковом исследовании данные сопоставляют с результатами других лучевых методов (рентгенологического, компьютерной томографии и др.) и клинико-лабораторными данными, что повышает надежность и достоверность диагностической информации [10].

При исследовании легких и плевры рекомендуется использовать конвексный датчик с частотой 3,5-5 МГц, затем зону с выявленными изменениями исследуют датчиками с частотой 7,5-10 МГц. Сканирование проводят в продольной, поперечной и косой плоскостях в горизонтальном (на спине, на животе, на боку), а при необходимости — в вертикальном положении пациента, при свободном дыхании и при его задержке на вдохе или выдоже, трансторакально или трансабдоминально (через брюшную стенку

в области мечевидного отростка, печень, селезенку). Используют стандартные анатомо-топографические ориентиры (парастернальные, маммарные, аксиллярные, скапулярные и паравертебральные линии). Особое внимание обращают на области синусов, используя субкостальный доступ [10, 12, 14].

Режимы сканирования – поисковый или прицельный. В прицельном режиме датчик устанавливается в межреберье в продольной или поперечной плоскости над предполагаемым патологическим очагом. При поисковом режиме проводят целенаправленный поиск пристеночного очага по всей проекции пораженной доли или всего легкого, датчик последовательно перемещают вдоль межреберья и по межреберьям вверх в сочетании с покачиванием его в продольной и поперечной плоскостях. Межреберное сканирование передних отделов легкого проводят спереди из 2-5 межреберий при опущенной руке пациента, в аксиллярной области - с максимально поднятой вверх на голову рукой и сзади в нижних отделах с поднятой за голову рукой, а в верхних отделах с отведением лопатки. Для этого пациент кладет руку на противоположное плечо, отводя лопатку вперед и в сторону. Дополнительно датчик устанавливают над и под ключицами, а также супрастернально (в яремной вырезке грудины).

При УЗИ грудной клетки можно визуализировать следующие элементы:

- мягкие ткани (кожа, подкожножировая клетчатка, мышцы);
- кости, за которыми возникают акустические тени;
- париетальный и висцеральный листки плевры (чаще в виде линейной гиперэхогенной структуры шириной до 2 мм);

ткани;
— частично средостение;

А.В. Катилов

 плевральные синусы и купол диафрагмы.

субплевральные отделы легочной

Выявленные при УЗИ изменения дают четкое представление о патологических процессах в легких и плевре, которые можно подразделить на очаговые изменения легочной ткани или инфильтрацию, очаговые изменения легочной ткани с реакцией плевры, очаговые изменения легочной ткани и плеврит, плеврит, абсцесс. В ряде случаев эхография является единственным методом диагностики патологических изменений грудной клетки.

УЗИ-диагностика плеврита (табл. 1)

Независимо от этиологии можно выявить свободный и осумкованный плеврит (апикальный, паракостальный, реберно-диафрагмальный, диафрагмальный и т.д.). При ультразвуковом исследовании визуализируется расхождение висцерального и париетального листков плевры, по расстоянию между которыми можно оценить приблизительное количество жидкости, определить структуру выпота (однородный, неоднородный), содержимое (нити фибрина, эхогенная взвесь, ячеистость) (рис. 1-3).

УЗИ-диагностика объемных образований легких (табл. 2)

Одним из перспективных направлений в эхографии является диагностика абсцессов легкого, однако как в отечественной, так и в зарубежной литературе этой проблеме уделяется недостаточное внимание [2, 13, 16].

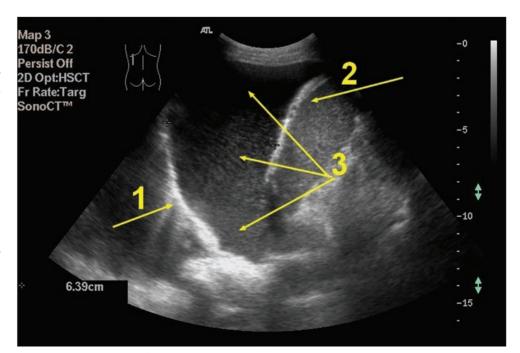


Рис. 1. УЗИ-признаки левостороннего экссудативного плеврита. Париетальный (1) и висцеральный (2) листки плевры, экссудат (3)

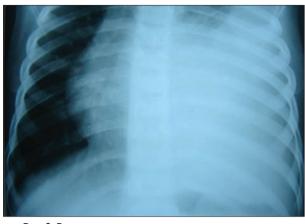


Рис. 2. Рентгенологические признаки левостороннего экссудативного плеврита (тот же пациент, что и на рис. 1)

Выявление при рутинном обследовании органов брюшной полости жидкости в плевральных синусах является показанием для проведения обзорной рентгенографии органов грудной клетки или компьютерной томографии, при необходимости в боковой проекции. Это в первую

очередь связано с тем, что объемные образования в оргрудной ганах клетки (рис. 4), даже при условии отдаленного их расположения от плевры, очень часто вызывают развитие реактивного плеврита.

УЗИ-диагностика пневмонии (табл. 3)

Ведущим методом диагностики пневмонии любого генеза остается рентгенологический [10].

При развитии пневмонии в легочной ткани возникает зона воспалительной инфильтрации, альвеолы заполняются экссудатом, развивается отек, усиливается кровенаполнение. Все эти изменения приводят к снижению или потере воздушности легочной ткани и уплотнению паренхимы легкого, что делает легочную ткань эхографически видимой [10].

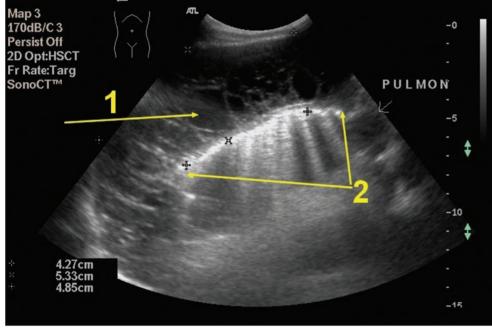


Рис. 3. УЗИ-признаки правостороннего пристеночного осумкованного плеврита с множественными перегородками (1) и изменениями висцерального листка плевры (2)

Таблица 1. Сравнительная характеристика возможностей ультразвукового и рентгенологического методов диагностики при плеврите

рентгенологическим методом	
– можно определить минимальный	
объем плевральной жидкости	
(начиная с 2 мл)	
– различить свободную или	
осумкованную жидкость	

Преимущества УЗИ перед

более точное выявление и определение объема осумкованного выпота в синусах и пристеночных отделах грудной полости - выявление оптимального места для

проведения плевральной пункции под

- контролем ультразвука - оценка в динамике рассасывания или организации плеврального выпота, формирования плевральных спаек, изменений со стороны листков плевры (эмпиема) без лучевой нагрузки
- возможность параллельного определения наличия гидроперикарда и асцита

Недостаточная информативность УЗИ

- условная оценка объема, особенно при большом количестве жидкости невозможность определения глубины залегания жидкости, особенно в междолевых
- шелях (жидкость расположена по ходу главной/малой междолевой щели), патологический очаг расположен глубоко, то он экранируется со всех сторон содержимого плевральной воздушной легочной тканью

Недостаточная информативность рентгенографии

- невозможно определить малое количество плевральной жидкости (минимальный объем выявляемой жидкости в плевральной полости -100-150 мл) - сложности при локализации
- жидкости в труднодоступных если плеврит междолевой местах (в плевральных синусах) отделах легких, расположенных за куполом диафрагмы или за тенью средостения)
 - затруднена оценка полости (однородное или нет, есть ли спайки), динамики рассасывания и организации плеврального выпота

гельная характеристика возможностей ультразвукового и рентгенологического методов диагностики при объемных образованиях легких

- при глубоком разований в мягких тканях, грудной стенке, плевре, субплевральных отделах легких, диафрагме, средостении - определение локализации, размеров, формы, контуров, эхогенности и эхоструктуры, степени инвазии в окружающие ткани - дифференциация жидкостных и солидных образований - оценка регионарных лимфатических узлов проведение трансторакальной диагностической пункции под контролем УЗИ - оценка возможных осложнений - наблюдение в динамике за изменениями в легких и плевральных полостях - при глубоком расположении в легочной ткани и в прикорневых зонах образований экспируются со всех сторон воздушной легочной тканыю - минимальная прослойка воздушной легочной ткани между объемных образований малых размеров - проведение трансторакальной стенкой вызывает полное отражение ультразвука и делает внутрилегочное образование невидимым	Преимущества УЗИ перед рентгенологическим методом	Недостаточная информативность УЗИ	Недостаточная информативность рентгенографии
	грудной стенке, плевре, субплевральных отделах легких, диафрагме, средостении — определение локализации, размеров, формы, контуров, эхогенности и эхоструктуры, степени инвазии в окружающие ткани — дифференциация жидкостных и солидных образований — оценка регионарных лимфатических узлов — проведение трансторакальной диагностической пункции под контролем УЗИ — оценка возможных осложнений — наблюдение в динамике за изменениями в	расположении в легочной ткани и в прикорневых зонах легких очаги экранируются со всех сторон воздушной легочной тканью — минимальная прослойка воздушной легочной ткани между объемным образованием и грудной стенкой вызывает полное отражение ультразвука и делает внутрилегочное	визуализация объемных образований малых

Таблица 3. Сравнительная характеристика возможностей ультразвукового и рентгенологического методов диагностики пневмонии Недостаточная Преимущества УЗИ перед Недостаточная информативность информативность рентгенологическим методом рентгенографии невозможно возможность оценки распростра- минимальная прослойка ненности и локализации субплеврального воздушной легочной ткани между выявление минипневмонического очага пневмоническим очагом грудной мального количества наличие плеврального выпота плеврального выпота

улучшает визуализацию раннее выявление осложнений невидимым (плеврит, абсцедирование) - расположенные глубоко в - динамическое наблюдение за легочной ткани и в прикорневых воспалительным процессом на фоне зонах легких очаги визуализации лечения недоступны - визуализация остаточных изменений в невозможность оценить

легких и плевре после окончания лечения

стенки вызывает полное отражение ультразвука и делает его - более позднее выявление осложнений (плеврит, абсцедирование) невозможность проведения частого динамического распространенность пневмонии контроля

Воспалительный очаг в легочной ткани в начале заболевания определяется как участок неправильной формы, пониженной эхогенности с нечеткими контурами и однородной структурой, которая напоминает эхографическую картину печеночной ткани. В случае долевой пневмонии он может эхогенным контуром. При выявлении в пневмоническом очаге участков сниженной эхогенности можно заподозрить абсцедирование. Проведение ультразвукового контроля в динамике помогает врачу определять дальнейшую тактику лечения и обследования пациента [9].

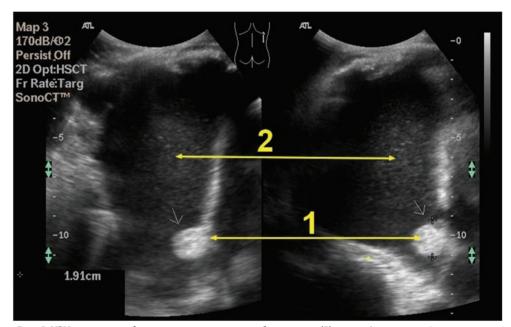


Рис. 4. УЗИ-признаки объемного пристеночного образования (1) на диафрагмальной поверхности плевры в области латеральных отделов справа на фоне значительного гидроторакса (2), не диагностированного с помощью рентгенографии

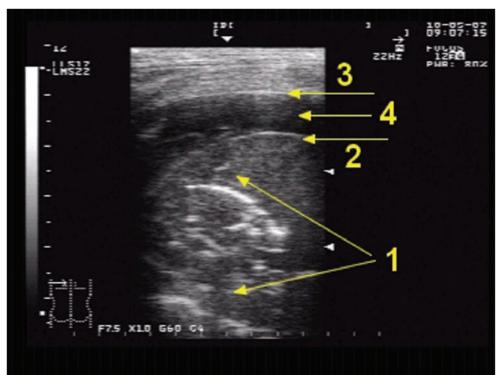


Рис. 5. УЗИ признаки левосторонней нижнедолевой пневмонии у 3-летнего ребенка. Эхогенные стенки сосудов и бронхов в пневмоническом очаге (1), расхождение висцерального (2) и париетального (3) листков плевры, плевральный выпот с нитями фибрина (4)

повторять форму доли; при сегментарной пневмонии - может иметь пирамидальную форму с основанием, обращенным к плевре; при очаговой может выглядеть участком неправильной формы, близкой к округлой. Стенки сосудов и бронхов в зоне инфильтрации визуализируются как эхогенные линейные структуры. Мелкие очаги в субплевральной зоне имеют вид гипоэхогенных участков с неровным

При осложненном течении пневмонии безвоздушные участки увеличиваются в размерах, несколько мелких сливаются в более крупные. Эти изменения на фоне алекватной терапии могут исчезать. При образовании абсцесса формируется полость с жидкостью, эхогенной взвесью и пузырьками воздуха (рис. 5-7). В раннем выявлении

Продолжение на стр. 62.

Е.Ю. Дмитриева, А.В. Катилов, Е.С. Откаленко, Л.Н. Бровинская, городская больница «Центр матери и ребенка». Винницкий национальный медицинский университет им. Н.И. Пирогова

Спорные вопросы ультразвуковой диагностики при заболеваниях органов грудной клетки

Продолжение. Начало на стр. 60.

деструктивных форм пневмонии эхография имеет преимущество перед рентгенографией [9].

Ранние признаки формирования абсцессов (1)

Представленные таблицы составлены нами на основании доступной литературы [3-5, 10-14].

Таким образом, следует признать, что ультразвуковая диагностика заболеваний легких, несмотря на многочисленные преимущества, является вспомогательным методом в диагностической цепочке и ни в коей мере не может заменить рентгенологических методов исследования.

Рис. 6. Рентгенологические признаки левосторонней нижнедолевой пневмонии у 3-летнего ребенка

Выводы

- Ультразвуковое исследование органов грудной клетки дает важную информацию о состоянии плевры, плевральной полости, субплевральных отделов легких, органов средостений, диафрагмы, периферических лимфатических узлов в зонах лимфооттока;
- ультразвуковая оценка неизмененной легочной ткани малоинформативна;

- основным методом диагностики и динамического наблюдения за течением пневмонии без субплевральной локализации является рентгенография;
- эхография позволяет в динамике оценить эффективность лечения и выработать дальнейшую тактику ведения больного;
- при плевральном выпоте целесообразно проводить УЗИ, так как этот метод позволяет определить оптимальное место пункции (торакоцентеза) плевральной полости и осуществлять контроль над положением и направлением иглы, то есть снизить вероятность осложнений, возникающих при данной манипуляции.

Литература

 Аджимамудова И.В., Дворяковский И.В., Ревякина В.А. Динамическое ультразвуковое исследование

- легких у детей с бронхиальной астмой, получавших сухие углекислые ванны// Ультразвуковая и функциональная диагностика. 2001.- № 1. С. 32-34.
- Блашенцева С.А. Ультразвуковой и рентгенологический методы в диагностике острых гнойных абсцессов легких// Мед. визуализация. 2001. №2. С. 34-38.
- №2. С. 34-38.

 3. Венгеров Б.Б. Эхографическая характеристика плевры у больных хроническим бронхитом: Автореф. дис. ...канд. мед. наук. Киев. 1990. 22 с.
- 4. Дворяковский И.В. Эхография внутренних органов у детей. М. 1994. С. 383-400.
- Дворяковский И.В., Абдрахманов К.Б., Споров В.В. Сравнительный анализ эхо- и рентгенографии при плевритах и пневмонии у детей// Вестник рентгенологии и радиологии. — 1988. — № 4. — С.52-57.
- Карасев В.Б. Ультразвуковая диагностика малого количества внутриплевральной жидкости // Военномедицинский журн. — 1996. — № 7. — С. 37-40.
- Кирсанов О.Н. Ультразвуковая диагностика плевритов// Вестник рентгенологии и радиологии. — 1989. — № 1. — С. 69-73.
- Мязин А.А. Возможна ли визуализация воздушной легочной ткани?// Ультразвуковая и функциональная диагностика. – 2002. – № 1. – С. 138.
- Мязин А.А. Эхография в диагностике заболеваний легких у детей// Новости лучевой диагностики. – 2002. – № 1-2. – С. 56-60.
- Практическое руководство по ультразвуковой диагностике. Общая ультразвуковая диагностика / Под ред. Митькова В.В. – М: Издательский дом «Видар». – М., 2003. – С. 659-695.
- Репик В.И. Ультразвуковое исследование в комплексной диагностике заболевания плевры и легких // Пульмонология. – 2001. – № 1. – С. 37-46.
- 12. Репик В.И. Ультразвуковое исследование легких и плевры. Клиническое руководство по ультразвуковой диагностике. Т.З / Под. ред. Митькова В.В., Медведева М.В. М.: Видар. 1997. Гл. 8. С. 242-270.
- Сафонов Д.В. Возможности трансторакального ультразвукового исследования в диагностике абсцессов легкого// Нижегородский мед. журнал. 2002. № 3. С. 61-65.
- Шахов Б.Е., Сафонов Д.Е. Трансторакальное ультразвуковое исследование легких и плевры // Нижний Новгород: Нижегородская государственная медицинская академия. – 2002. – 116 с.
- 15. Фейгенбаум X. Эхокардиография. 5-е изд. / Пер. с англ. под ред. Митькова В.В. М.: Видар. 1999.
- 16. Kroegel C., Reibig A. Transthorakale Sonographie: Grundlagen und Anwendung; ein Leitfaden für die Praxis// Stuttgart; New York. Thieme. 2000. P. 116.

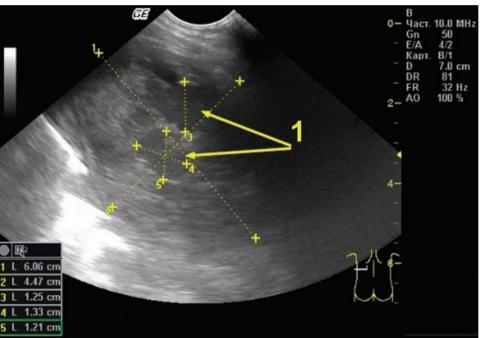


Рис. 7. УЗИ-признаки левосторонней нижнедолевой пневмонии у 3-летнего ребенка

AHOHC

Державна установа «Національний інститут фтизіатрії і пульмонології ім. Ф.Г. Яновського АМН України»

Шановні колеги!

Запрошуємо вас взяти участь у роботі науково-практичної конференції

«ХОЗЛ — шляхи оптимізації, профілактики, giazhocmuku, лікування і реабілітації»

18 березня 2010 р., м. Київ

Конференція відбудеться на базі ДУ «Національний інститут фтизіатрії і пульмонології ім. Ф.Г. Яновського АМН України» за адресою: 03680, м. Київ, вул М. Амосова, 10

Науково-практична конференція внесена до реєстру з'їздів, симпозіумів та конференцій, які проводитимуться у 2010 році. Учасникам конференції будуть видані сертифікати. Початок реєстрації делегатів конференції — о 9 год. Відкриття конференції — о 10 год.

Контактні телефони оргкомітету:

275-93-11, 270-35-59 – професор **Гаврисюк Володимир Костянтинович**

270-35-61 – професор Дзюблик Олександр Ярославович

